Semi-Supervised Neural Gas for Adaptive Brain-Computer Interfaces
نویسندگان
چکیده
Non-stationarity is inherent in EEG data. We propose a concept for an adaptive brain computer interface (BCI) that adapts a classifier to the changes in EEG data. It combines labeled and unlabeled data acquired during normal operation of the system. The classifier is based on Fuzzy Neural Gas (FNG), a prototype-based classifier. Based on four data sets we show that retraining the classifier significantly increases classification accuracy. Our approach smoothly adapts to the session-tosession variations in the data.
منابع مشابه
Semi-Supervised Classification for Intracortical Brain-Computer Interfaces Semi-Supervised Classification for Intracortical Brain-Computer Interfaces
Intracortical brain-computer interface (BCI) systems may one day allow paralyzed patients to interface with robotic arms or computer programs using their thoughts alone. However, a common and unaddressed issue with these systems is that due to small instabilities in the recorded signals, the decoding algorithms they rely upon must be retrained daily in a supervised manner. While this may be acc...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملMultimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface
Brain computer interfaces allow users to preform various tasks using only the electrical activity of the brain. BCI applications often present the user a set of stimuli and record the corresponding electrical response. The BCI algorithm will then have to decode the acquired brain response and perform the desired task. In rapid serial visual presentation (RSVP) tasks, the subject is presented wi...
متن کاملOn the use of interaction error potentials for adaptive brain computer interfaces
We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance ...
متن کاملAdaptive learning with covariate shift-detection for motor imagery-based brain-computer interface
A common assumption in traditional supervised learning is the similar probability distributionof data between the training phase and the testing/operating phase. When transitioning from the training to testing phase, a shift in the probability distribution of input data is known as a covariate shift. Covariate shifts commonly arise in a wide range of real-world systems such as electroencephalog...
متن کامل